The ubiquitin–proteasome pathway protects Chlamydomonas reinhardtii against selenite toxicity, but is impaired as reactive oxygen species accumulate
نویسندگان
چکیده
The ubiquitin-proteasome pathway (UPP) coordinates a myriad of physiological processes in higher plants, including abiotic stress responses, but it is less well characterized in algal species. In this study, the green alga Chlamydomonas reinhardtii was used to gain insights into the role of the UPP during moderate and severe selenite stress at three different time points. The data indicate that activity of the UPP in response to selenium (Se) stress was both time and dose dependent. Moderate selenite stress increased proteasome activity, protein ubiquitination and the proteasomal removal of malformed selenoproteins. However, severe Se stress caused by prolonged selenite treatment or high selenite concentration decreased proteasome activity, inhibited protein ubiquitination and prevented the proteasomal removal of selenoproteins. The UPP impairment during severe Se stress was associated with the observed accumulation of reactive oxygen species (ROS), including mitochondrial superoxide. Additionally, proteasomal inhibition decreased the concentration of chlorophyll in cultures challenged with Se. Therefore, although the UPP protects Chlamydomonas against Se stress, severe oxidative stress induced by selenite toxicity likely hinders the UPP's capacity to mediate a stress response. The possibility that stress tolerance in plants is dependent upon optimal UPP activity and maintenance is discussed.
منابع مشابه
Stuck between a ROS and a hard place: Analysis of the ubiquitin proteasome pathway in selenocysteine treated Brassica napus reveals different toxicities during selenium assimilation.
During the selenium assimilation pathway, inorganic selenate and selenite are reduced to form selenocysteine (Sec). Tolerance to selenium in plants has long been attributable to minimizing the replacement of cysteine with selenocysteine, which can result in nonspecific selenoproteins that are potentially misfolded. Despite this widely accepted assumption, there is no evidence in higher plants d...
متن کاملPortulaca oleracea protects H9c2 cardiomyocytes against doxorubicin-induced toxicity via regulation of oxidative stress and apoptosis
Abstract Background and Objectives: Doxorubicin as an effective chemotherapeutic agent is frequently used in various cancers. Nowadays, the application of doxorubicin is limited due to its cardiotoxic effects. The important mechanism which is involved in the cardiac injury of doxorubicin is the generation of reactive oxygen species; therefore antioxidant compounds may reduce cardiotoxicity. ...
متن کاملKnock-Down of the IFR1 Protein Perturbs the Homeostasis of Reactive Electrophile Species and Boosts Photosynthetic Hydrogen Production in Chlamydomonas reinhardtii
The protein superfamily of short-chain dehydrogenases/reductases (SDR), including members of the atypical type (aSDR), covers a huge range of catalyzed reactions and in vivo substrates. This superfamily also comprises isoflavone reductase-like (IRL) proteins, which are aSDRs highly homologous to isoflavone reductases from leguminous plants. The molecular function of IRLs in non-leguminous plant...
متن کاملOxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.
The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown...
متن کاملExtracellular production of hydrogen selenide accounts for thiol-assisted toxicity of selenite against Saccharomyces cerevisiae.
Administration of selenium in humans has anticarcinogenic effects. However, the boundary between cancer-protecting and toxic levels of selenium is extremely narrow. The mechanisms of selenium toxicity need to be fully understood. In Saccharomyces cerevisiae, selenite in the millimolar range is well tolerated by cells. Here we show that the lethal dose of selenite is reduced to the micromolar ra...
متن کامل